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Validation of a Monte Carlo Simulation of 
the Plane Couette Flow of a Rarefied Gas 
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We report and discuss the results of a direct Monte Carlo simulation of the flow 
of a rarefied gas flowing between two parallel plates when one of them moves 
in its own plane. The boundary conditions are assumed to be of the "bounce- 
back" type and the molecules to be Maxwelrs. Under this condition the 
moments can be computed exactly, following a method used by Ikenberry and 
Truesdell in the unbounded case. This allows a comparison of the Monte Carlo 
methods with the exact solution and an evaluation of its accuracy. 
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1. INTRODUCTION 

While the Mon te  Car lo  techniques for solving the Bol tzmann equat ion cl-3~ 
have been used for some time now, the problem of their val idat ion in the 
space- inhomogeneous  case through a compar i son  with an exact solut ion 
does not  appear  to have been t reated so far. This c i rcumstance is clearly 
related to the difficulty of finding exact  solut ions for the inhomogeneous  
Bol tzmann equat ion  in general ,  and  for the inhomogeneous  case in the 
presence of  boundar ies  in part icular .  ~4) It is clear, however,  that  the study 
of this p rob lem is of great  impor tance  for unders tanding  the accuracy and 
the range of  appl icabi l i ty  of  the Monte  Car lo  method.  Here we poin t  out  
that ,  using the "bounceback  ''c5) bounda ry  condi t ions ,  it is possible to find 
exact expressions for a few moments  of  the dis t r ibut ion function in the 
plane Couet te  flow problem,  when the molecules are assumed to be 
Maxwelrs .  Actual ly  this c losed-form expression had a l ready been found by 
Ikenberry  and Truesdell ,  ~6) who did not  ment ion  any boundaries .  This is 
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possible because, as remarked before by Cercignani, tS) there is no Knudsen 
layer at the boundaries for the solution under consideration and hence the 
solution can be continued to the entire space. 

In this paper we shall discuss the aforementioned closed-form solution, 
the Monte Carlo solution, and the fluctuations of the macroscopic quan- 
tities. The simulations have been performed with both a one-dimensional 
and a two-dimensional code and found in a good agreement with the 
closed-form solution. Our results refer to Knudsen numbers Kn of order 
10- '  and Mach numbers Ma from 0.5 to 31. The solution has, however, 
such similarity properties that only the combination Kn .  Ma is significant. 
The latter product ranges from 0.1 to 6.2. 

2. BASIC EQUATIONS 

af af ~f af 
~ + r  ~x + r ~yy + r ~zz = Q(f, f )  

Let us consider a monatomic rarefied gas with average density Po in 
motion between two parallel plates, located at y = 0 and y = L, respectively 
(see Fig. 1). The upper plate moves with velocity Uo, while the lower one 
is at rest. The Boltzmann equation reads as followstZ'3"Tj: 

(2.1) 

(2.2) 

where x =  (x, y, z) and ~=  (r ~2, ~3) are the position and velocity vec- 
tors, respectively, of a molecule while 

Q(:,:)= :: ,(o, ,o  

v Uo 

is the collision operator. Here B(O, I~-~,1) is a kernel describing the 
details of molecular interaction, m is the molecular mass, and f ' ,  f . ,  and 
f .  are the same as f,  except for the fact that ~ is replaced by ~', ~. ,  and 
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Fig. I. Geometry and velocity profile. 
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~,,  respectively. Also, ~, is an integration variable (the velocity of any 
molecule colliding with a molecule of velocity ~), whereas ~' and ~, are the 
velocities of two molecules entering a collision which brings them to 
velocities ~ and ~,. Finally, 0 and e give the direction along which the same 
molecules approach each other. 

The dimensionless parameters here are the Knudsen number KnL 
based on the distance between the plates L (KnL= 20/L), and the speed 
ratio S =  Uo/Vth [where V,h = (2RTo) I/2 is the thermal speed], related to 
the Mach number Ma by M a =  (6/5) I/2 S =  1.095S. The basic parameter 
should be the product of these two parameters, or the dimensionless 
velocity gradient 

Uo2o 
x = L(RTo)I/2 (2.3) 

We complete our formulation with the following initial and boundary 
conditions: 

(a) At time zero we assume a Mawellian distribution with tem- 
perature To and bulk velocity Uoy/L along the x axis: 

f(O, x, y, ~)=porr-3/2g~3 e x p ( -  1~-iUoy/Ll2/VZth ) (2.4) 

where i is the unit vector along the x axis. 

(b) At the plates we assume that the molecules bounce back in the 
reference flame of each plate and hence write 

f ( t ,  x, O, ~) =f(t ,  x, O, - ~ )  (2.5) 

f ( t ,  x, L, ~) = f ( t ,  x, L, 2Uo - ~) (2.6) 

In the two-dimensional simulation a periodicity condition (with 
period s  was added in the x direction. If we assume Maxwell's mole- 
cules, (2"3) we have 

B(O, I%- %,1) = B(O) (2.7) 

Then the mean free time will be independent of temperature and thus 
constant if the density keeps constant. As a matter of fact, the model used 
in our calculatibns is the variable hard-sphere model (VHS); this means 
that if the collision law between particles is the same as for hard spheres 
[and hence B(O, I ~ - ~ , l ) = a  2 I~--~, l  cos0s in0 ,  where a is the sphere 
diameter], we allow this diameter to be inversely proportional to the 
power 2/(~/- 1) of the relative speed (here r/is the exponent of the repelling 
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force in the corresponding inverse power law model). Thus, to mimic 
Maxwellian molecules, we take o=ao(Vo/V) I/z, where V= I~-~,1 is the 
relative speed and Vo its average value at the reference temperature. Thus 
Eq. (2.7) remains true. 

3. THE CLOSED-FORM SOLUTION 

One can obtain a space-inhomogeneous solution for the Boltzmann 
equation from a homogeneous one by means of Nikol'skii's transforma- 
tion. (8"6"7) Thus, by applying this transformation to the BKW mode, one 
obtains a solution first obtained by Muricaster. (9~ Nikol'skii's solutions 
describe a spherical expansion or a spherical compression; the latter ceases 
to exist for a finite time. Their moments are space-homogeneous; this 
applies in particular to the thermal energy per unit volume of the gas. 
Solutions of this kind for the moments were first found by Galkin and are 
called homoenergetic dilatations, cl~ 

Homoenergetic dilatations are particular cases of more general solutions 
called homoenergetic affine flows. The book by Truesdell and Muncaster 17~ 
gives a unified discussion of homoenergetic affine flows. The defining 
properties are the following: 

(a) The body force (per unit mass) X acting on the molecules is 
constant: 

X = const (3.1) 

(b) The moments formed with the peculiar velocity e = ~ , - u o  are 
space-homogeneous. 

(c) The bulk velocity u is an affine function of position x: 

u = K(t) x + Uo(t) (3.2) 

An analysis of the balance equations based on (a)-(c) immediately leads to 
the following restrictions on K and Uo: 

K + K 2 = 0 
(3.3) 

KVo + Kuo = X 

The general solution of this system is 

K(t) = [ I +  t K ( 0 ) ] - '  K(0) 
Uo(t) [ l + t K ( 0 ) ] _  l [ u o ( 0 ) + t x + � 8 9  (3.4) 
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where I is the 3 x 3 identity matrix. This solution exists globally for t > 0 
if the eigenvalues of K(0) are nonnegative; otherwise the solution ceases to 
exist for t = t o ,  where - t o  ~ is the largest, in absolute value, among the 
negative eigenvalues of K(0). 

In particular, if 

[ K ( 0 ) ] 2 = 0  (3.5) 

then [I + t K ( 0 ) ] - 5 =  I - t K ( 0 )  and therefore K(t) is independent of time. 
u is then steady if and only if 

K(0) X = 0 (3.6) 

and if Uo(0) is chosen in such a way that 

K(0) Uo(0) = X (3.7) 

In particular, this is always possible if X = 0. 
Equation (3.5) is satisfied if and only if a coordinate system exists for 

which the matrix representation of K(0) is given by 

((Ko-)) = 0 

0 

(3.8) 

For a simple proof of this, see ref. 11. When (3.5) applies, one talks, 
for obvious reasons, of a homoenergetic shear flow. 

As shown by Galkin 1~~ 541 and Truesdell, t~SJ the second-order 
moment equations for a Maxwell gas, associated with a homoenergetic 
affine flow, are decoupled from those of higher order and can be solved 
explicitly. This result generalizes the result mentioned above for homo- 
energetic dilatations. 

The most interesting moment equations are those for p.,,.,, = S c~ d d~,  

p . ~ , . = S c x c y f d ~ ,  and P = ] S  le l2fd~:  

2 Jt:~'- r/~ + ~Y Pxy = 0 

rPx~, + p.,-y + ~--pyy = 0 

T,~ :,y - p + pvy = O 

(3.9) 

Here z is the relaxation time, given by 

z = # /p  (3.1o) 
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where # is the viscosity of the gas when the Boltzmann equation agrees 
with the Navier-Stokes equations, while ~-- is the dimensionless number 

# - = r K = / a K  (3.11) 
P 

This is a system of three linear, homogeneous, first-order differential equa- 
tions that possesses a set of linearly independent solutions of the form 

p = pO exp(zt/~); p.,..,, = pO.,. exp(xt/r); p.,:,, = pOy exp(zt /~)  (3.12) 

where Z is one of the roots of the third-degree equation 

X(X + 1 )2 _ Zo7-2 (3.13) 

This equation can be solved explicitly by means of the formulas of Scipione 
del Ferro and Cardano. It is enough here to remark that it certainly has 
a real root R; the other two roots can be easily expressed in terms of R and 
turn out to be complex with real part - I - - R / 2  and imaginary part 
+[R(1 + 3 R / 4 ) ]  ~/2. This immediately shows that R must be positive, 
because the product of the roots must equal the right-hand side of 
Eq. (3.13). Thus, in general, the solution of system (3.9) will possess a part 
that grows exponentially in time and another part that oscillates with an 
exponentially decaying amplitude. The asymptotically dominating part 
agrees with the Navier-Stokes equations with an error O(9-2). The 
exponential growth of the dominating part can be easily explained by the 
circumstance that the solution under consideration forbids any heat diffu- 
sion; thus the work done by the tangential stress heats up the gas and 
increases the pressure, which in turn increases the stress components p,y 
and Px,, because viscosity increases with pressure. 

Condition (b) above holds for the solutions obtained by Truesdell "51 
and Galkin. 1~~ ~4~ For analyses relating directly to the distribution func- 
tion f, this condition is transformed c~j~ into: 

(b') The variable x appears i n f o n l y  through the bulk velocity 

f = f ( c ,  t) (3.14) 

where c = { - u  is the random velocity. In ref. 11, Cercignani attacked the 
problem of showing that the conditions given above are also sufficient for 
a solution of the Boltzmann equation for homoenergetic affine flows to 
exist. In particular he showed that f(e,  t) must satisfy the equation 

a--f- d--f" Ke = Q(f, f )  (3.15) 
&t ae 
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and proved an existence theorem for Eq. (3.15), not only for Maxwelrs 
molecules, but for general kernels, as explained by the following. 

E x i s t e n c e  T h e o r e m .  There exists a solution f of Eq. (1.1), where 
the kernel B ( ~ - - ~ , ,  n) of the collision term Q(f , f )  does not grow more 
than quadratically in ~ and ~.  and the initial mass density, energy density, 
and H-functional ( = ~ f l o g f d ~ )  are finite at time 0. These functionals 
remain bounded for 0 ~< t ~< T. The time T is arbitrary provided K(0) has no 
negative eigenvalues. If K(0) possesses negative eigenvalues and t o ~ is their 
largest absolute value, then T must not be larger than to. 

One can also prove ~ the following. 

U n i q u e n e s s  T h e o r e m .  Let f be the solution delivered by the 
Existence Theorem. If the fourth-order moments exist at t = 0, they exist in 
[0, T],  and then the solution of Eq. (3.10) is unique. 

Although we have not mentioned boundary conditions so far in this 
section, it is now easy to check that solutions of the form f = f ( e ,  t) satisfy 
the boundary conditions (2.5) and (2.6) provided the initial distribution is 
even in c and u ( y = 0 ) = 0  and u ( y = L ) =  Uo i. 

4. M E T H O D  O F  S O L U T I O N  

The Monte Carlo simulation was devised in agreement with the 
formulation of Section 2. We considered both a one-dimensional and a 
two-dimensional simulation. In the present description of the method we 
consider the two-dimensional case; the modifications for the one-dimensional 
one are obvious. 

The basic steps of the simulation are as follows: 

(a) The time interval [0, T]  over which the solution was sought for 
was subdivided into subintervals with step At. 

(b) The space domain was subdivided into cells with sides Ax, Ay. 
(c) The gas molecules were simulated in the gap G with a stochastic 

system of N points having positions xi(t), yi(t) and velocities ~i(t). 

(d) At each time there are N,, molecules in the mth cell; this number 
is varied by computing its evolution in the following two stages: 

Stage I. The binary collisions in each cell are calculated without 
moving the particles. 

Stage 2. The particles are moved, with the new initial velocities 
acquired after collision (no collisions in this stage). 

(e) Stages 1 and 2 are repeated until t =  T. 
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(f) The important moments of the distribution functions are 
calculated by averaging over the particle in a cell. An additional space 
averaging is introduced for moments which are space-homogeneous. 

Let us describe now the two stages of the calculation in some detail: 

Stage 1. We use Bird's "no time counter" scheme, (~ which envisages 
the following three steps: 

Step 1. Computation of the maximum number of binary collisions 
in a box, Ncm,x. This is, for our model, independent of the relative speed 
and thus it represents the average number of collisions that must occur in 
a time interval At. 

Step 2. The effective number of collisions Nco. that occur in the 
current time interval is a Poisson statistical variable with mean N . . . .  
which is simulated by counting the number of random delays between 
successive collisions drawn from the corresponding exponential distribution 
until the time interval is expired. 

Step 3. Choose N~o. pairs (i, j )  of particles randomly. Each of these 
pairs is "collided" with probability I~,-~jl/(l~i-~jl )max raised to the 
power ( 5 - q ) / ( r / - 1 )  which becomes certainty for Maxwell molecules. If 
the collisional event occurs, the velocities after collisions are calculated in 
the following way: 

(4.1) 

(4.2) 

where k is a vector randomly distributed on the unit sphere. Otherwise the 
velocities are left unchanged. 

Stage 2. 
the equations 

The new positions of the molecules are computed through 

X + = X i - - l - ~ l i Z l l  

Y+ = Yi + ~zi At 
(4.3) 

The particles with y f  ~<0 or y,+ ~>L are reflected according to 
Eqs. (2.5)-(2.7); the particles with x~ + ~<0 and x ~ / > / ,  are reinjected at 
x,. + + s or x~ + - s  with their velocities. 
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Table I. Values of the Parameters Used in the Simulations 
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Knudsen Mach non-dimensional sampling step (in 
number number velocity gradient time constant X units 2o/RV/-~o) 

0.2 0.5 0.162 0.o17 0.4 
0.2 3 0.97 0.346 0.2 
0.2 31 10.04 3.43 o. 1 

5. RESULTS OF THE ONE-DIMENSIONAL SIMULATION 

In the one-dimensional simulation we used 100 cells with N =  10,000 
particles per cell and collected data only at the end of certain chosen inter- 
vals of length T>> At. As time unit we chose the mean free time and as 
length unit the mean free path. Then the data for our calculations are 
summarized in Table I. 

The results for the moments  p_~y, p.,..,,, their ratio, and the "longitudinal 
temperature" T x = p x . J p R  and the dimensionless velocity are given in 
Figs. 2-6 (for ~ ' -=0 .162  and Ay=0 .05) ,  Figs. 7-11 (for 9- '=0 .97 ,  
A y =  0.05), and Figs. 12-16 (for ~ - =  10.04, Ay=0 .1 ) .  The fields of T~ and 
U= are snapshots taken at the final time and are plotted along the plate dis- 
tance together with the linear interpolation and error bounds given by 
+3(T=/N) uz for U= and +3T=(2/N) ~/2 for T.,., while the time evolution of 
the stresses is averaged over all the cells thanks to the spatial homogeneity. 

-0.05 

-0.1 

& 

-o.15 

-0.2 

Truesdell 
DSMC 

-0.2~ 
5 time ('p / p) 10 15 

Fig. 2. Time evolution of tangential stress; Kn = 0.2, Ma = 0.5 (one-dimensional simulation). 
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Fig. 3. 
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T ime evolut ion of  the stress normal  to the f low; Kn  = 0.2, M a  = 0.5 (one-dimensional 
simulat ion). 

Fig. 4. 
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Time evolution of the ratio of the tangential to the normal stress; Kn = 0.2, Ma = 0.5 
(one-dimensional simulation). 
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Fig. 5. Tangential velocity profile at the final instant; Kb=0 .2 ,  Ma=0 .5 :  ( �9  one-dimen- 
sional DSMC, (--) linear fit, ( - - )  + 3  standard deviations obtained through the calculated 
temperature T,.. 

Fig. 6. 
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T~ at the final instant; Kn =0.2, Ma =0.5: ( � 9  one-dimensional DSMC, (--) linear 
fir, ( - - )  + 3  standard deviations from the mean. 
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Fig. 7. 

0 h _  ': I - -  Truesdelll 
I - ~ e e ~ _ i  : o  DSMC | 

- 1  . . . . . . . . . .  :- . . . . . . . . . . . .  " . . . . . . . . . . . .  

. - 3  - - - i  . . . . . . . . . . . .  

6 8 
t i m e  ( , u / P )  

Time evolut ion of tangential  stress; K n  = 0.2, Ma  = 3 (one-dimensional  s imulat ion).  

Fig. 8. 
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Time evolut ion of the stress normal  to the flow; K n  = 0.2, Ma  = 3 (one-dimensional  
s imulat ion).  
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Fig. 9. 
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Time evolution of the ratio of the tangential to the normal stress; Kn = 0.2, Ma = 3 
(one-dimensional simulation). 
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Fig. 10. Tangential velocity profile at the final instant; Kn=0.2 ,  M a = 3 :  ((3) one-dimen- 
sional DSMC, (--) linear fit, ( - - )  +3 standard deviations obtained through the calculated 
temperature T x .  
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Fig. 11. 
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Fig. 13. 
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Time evolution of the stress normal to the flow; K n = 0 . 2 ,  M a = 3 1  (one-dimen- 
sional simulation). 
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Fig. 14. Time evolution of the ratio of the tangential to the normal stress; Kn = 0.2, Ma = 31 
(one-dimensional simulation). 



832 Cercignani and Cortese 

4O 

35 

3O 

25 

10 

5 

0'd ' ' ' 0:8 0.2 0.4 0.6 
y/L 

Fig. 15. Tangential velocity profile at 0.9@/p; Kn=0.2,  Ma=31 :  (.)  one-dimensional 
DSMC with 50 cells and 40,000 particles per cell, ( - - )  _+3 standard deviations obtained 
through the calculated temperature T~. 
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Fig. 16. T,. at 0.96/J/p; Kn=0.2 ,  Ma=31 :  (O)  one-dimensional DSMC, (--) linear fit, ( - - )  
+ 3 standard deviations from the mean. 
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From these pictures it is easy to verify the following expectations, 
based on the discussion of Section 3. 

(a) There is an unsteady solution with constant density, while the 
stresses are uniform and the velocity profile is steady. Remark that the 
latter is verified by linear interpolation at a given time instant. 

(b) Interchanging the values of the Mach and Knudsen numbers 
has no consequences thanks to the dynamical self-similarity of the flow, 
which implies that the solution only depends on the product of these two 
numbers. 

(c) The time evolution corresponds to the solution given by 
Truesdell and summarized in Section 3. 

We remark that the fluctuations are large, but in the case of the bulk 
velocity they always remain within the standard deviation bounds, even if 
the pictures refer to a given time instant and not to a time average. In the 
case of temperature fluctuations, the standard bounds are exceeded for 
M a = 3 1 ,  K n = 0 . 2  (Fig. 16), but we remark that these bounds are 
calculated under the assumption that the standard error in the square of 
the molecular velocity ~l is equal to x/~ T.,., which is strictly true only if 
the underlying distribution is well represented by a Maxwellian. On the 
contrary, the results of Section 7 show that, with the increase of Y', this 
hypothesis no longer holds. 

6. R E S U L T S  OF T H E  T W O - D I M E N S I O N A L  S I M U L A T I O N  

We performed the two-dimensional calculations with the same values 
of Mach and Knudsen numbers as before in a square domain 10 x 50 cells 
wide with 2000 particles per cell, to verify that homogeneity was main- 
tained. The results agree completely with the one-dimensional ones both in 
the time evolution of moments (whose graphs are not shown, being a copy 
of those discussed in the previous section) and with respect to the space 
homogeneity which maintains itself in the statistical bounds proper to the 
reduced size of the sample, as can be seen from Figs. 17 and 18 relative to 
the profiles of the x component of the velocity taken at the same instant at 
two different values of x. 

7. T H E  D I S T R I B U T I O N  F U N C T I O N  

In the one-dimensional case we also computed the distribution func- 
tion normalized as a probability in velocity space and compared it with an 
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Fig. 17. Tangential velocity profile at 2.41alp and x=L/2; Kn=0.2 ,  M a = 3 1 :  (O)  two- 
dimensional DSMC with 10 x 50 cells and 2000 particles per cell, (--) linear fit, ( - - )  theoreti- 
cal velocity profile __+_3 standard deviations obtained through the calculated temperature T x. 

50 

-Wo 0007 
0 ~/. 0 0 o 

-~0 o'2 014 0'6 0'8 
y/l_ 

Fig. 18. Tangential velocity profile at 2.4~/p and x=0 .5L;  Kn=0 .2 ,  M a = 3 1 : ( O )  two- 
dimensional DSMC with 10 x 50 cells and 2000 particles per cell, (--) linear fit, ( - - )  theoreti- 
cal velocity profile + 3 standard deviations obtained through the calculated temperature 7",.. 



C o u e t t e  F l o w  of  a Raref ied  Gas 835 

anisotropic normal  distribution fN. The latter, when referred to suitable 
axes, can be written as 

1 [ (7.1) 
f u  = 2•(Tl T2) 1/2 exp 2Tt 2T2 J 

where ~'1 and ~'_, are the molecular velocity components  with respect to a 
Cartesian coordinate system rotated by an angle 0 with respect to (x, y). 
Thus 

G = r cos 0 -  ~2 sin 0, ~'2 = ~, sin 0 +  ~2 cos 0 (7.2) 

Equat ion (7.l) is a good representation for the part of the distribytion close 
to the bulk velocity, but the tails of the distribution are more populated in 
the actual distribution than in (7.1). The level surfaces in Figs. 19-21 refer 
to the values 0.001, 0.01, 0.1, 0.3, 0.5, and 0.8 in terms of the maximum 
value. Figure 20, which refers to the same case as Fig. 19 but at a later 
time, shows that, as time passes, the less populated levels differ more and 
more widely in the approximate analytical representation (7.1) and in the 
results of the calculations. The angle 0 = 1.080 computed by best-fitting is 
in good agreement with the value 1.097 for the ellipse of the stresses. 
Figure 21 refers to the higher Mach number  Ma = 31. Here the angle varies 

- - ~ - - 6  - ~ ~ '  ~ ~ . . ~ - ~ , -  - - - ~  o ~ - ~ - - - - - - - - -  . . . . . . . .  i . . . . . . . .  i . . . .  
D 0 : : 

,_ - - ~  ' ~ o  ..... i .... 

i o _: ---! . . . . .  ~. 

-3 i .~. _:~_. 
- - - "  . . . . . . .  " '~ o o o 

-5 
-2 0 2 4 6 

Fig. 19. Isolines of the marginal distribution function integrated along the z direction at 
y= L/2 and time 1.4#/p; Kn = 0.2, Ma = 3: (O) one-dimensional DSMC, 1--) fitting by a 
bivariate normal distribution. Contour lines cut at the fractions 0.001, 0.01, 0.1, 0.3, 0.5, and 
0.8 of the DSMC maximum. 
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Fig. 20. Isolines of the marginal distribution function integrated along the _- direction at 
y=L/2 and time 8.8p/p; K n = 0 . 2 ,  M a = 3 :  ((3) one-dimensional DSMC, ( - - )  fitting by a 
bivariate normal distribution. Contour  lines cut at the fractions 0.001, 0.01, 0.1, 0.3, 0.5, and 
0.8 of the DSMC maximum; note that the DSMC line at 0.01 overlaps with the line of the 
model at 0.001. 
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Fig. 21. Isolines of the marginal distribution function integrated along the r. direction at time 
0.7~/p; K n = 0 . 2 ,  M a = 3 1 :  thanks to the homogeneity, it has been referred to the thermal 
velocities and averaged on the whole field. ((3) One-dimensional DSMC, ( - - )  fitting by a 
bivariate normal distribution. Contour  lines cut at the fractions 0.001, 0.01, 0.1, 0.3, 0.5, and 
0.8 of the DSMC maximum. 
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from 1.32 to 1.42 in a time interval of the order 3.5#/p as compared to the 
value 1.36 of the ellipse of the stresses. 

The fact that the distributions are always symmetrical with respect to 
their centers ensures that the centered third-order moments, and hence the 
heat flow, vanish at all times, as predicted by the analytical solution. 

The velocity distribution in the (y, z) plane remains perfectly isotropic, 
ensuring the equality of pyy and p=,  in agreement with the closed-form 
solution. 

8. C O N C L U D I N G  R E M A R K S  

We have discussed the results arising from a numerical simulation of 
the behavior of a monatomic rarefied gas in plane Couette flow with 
"bounceback" boundary conditions. This behavior agrees with a closed- 
form solution. From the figures one can also see that most of the computed 
data lie within the bounds established by standard deviation. 

We feel that the validation presented here guarantees that Monte 
Carlo simulation provides results in good agreement with the Boltzmann 
equation. This is important not only for applications to high-altitude 
flight, ~1 but also because because this type of simulation has proved to be 
a good tool for investigating the development of instabilities t~6-~8~ and 
possibly the transition of a rarefied gas to turbulence, t~9~ 
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